technical data Synchronous Belts and Belt Sprockets design data

Layout Design

Guide flange installation

Synchronous Belts tend to shift to one side in the axial direction of the pulley during operation. Therefore, a guide flange is attached to the pulley to prevent Synchronous Belts from coming off the pulley. The installation standards for guide flanges are as follows:

Horizontal shaft transmission

Attach guide flanges to both sides of one pulley, or to the opposite sides of both pulleys (Example 1).

Also, if the distance between the pulley axes is eight times or more the outer diameter of the small pulley, attach guide flanges to both sides of both pulleys. (Example 2)

(Example 1)

Example 1

(Example 2)

Example 2

Vertical shaft transmission

Since the belt may come off downwards due to its own weight, attach guide flanges to both sides of one pulley and the underside of the other pulley.

Vertical shaft transmission

multi-axis shaft transmission

Attach guide flanges to both sides of every other pulley (Example 3) or to one side of every pulley (Example 4).

multi-axis shaft transmission

Use of idlers

Idler is used in the following cases:

  • - When the bearing is fixed and installation tension is to be adjusted
  • ・When the speed ratio is large and the number of meshing teeth of the small pulley is increased
  • ・When the belt cannot be guided by the drive and driven pulleys

Precautions when using idlers

  • - The idler should be fixed and, in principle, used on the slack side.
  • - If the idler and both sides are not parallel to each other, the idler may cause the belt to come off the pulley, so please be careful.
  • ・Decide the idler diameter as follows:
  • Inner idler... Belt Sprockets with at least the minimum number of teeth shown in the table below.
  • Outer idler: A flat pulley with no crown, with a diameter at least 1.2 times the pitch circle diameter of the pulley in the table below.

Minimum number of pulley teeth when selecting an idler

kinds Rotational speed r/min
Under 900 Over 900
Under 1200
Over 1200
Under 1800
Over 1800
3600 or less
P2M 16 16 18 20
P3M・UP3M 14 14 16 18
P5M・UP5M 18 20 24 28
P8M・UP8M 24 26 26 28
P14M・UP14M 28 28 28 34

Note: For speeds exceeding 3600 r/min, refer to the standard transmission capacity table.

Minimum number of pulley teeth when selecting an idler

Adjust the axle distance

When transmitting power using only drive and driven pulleys without using idlers, provide an adjustment allowance for the center distance in the bearings, including the manufactured length (tolerance) of the belt.

Adjust the distance between the two shafts

Belt length kinds
P2M・P3M・P5M
UP3M・UP5M
P8M・P14M
UP8M・UP14M
△Co Under 500 3 3
500~1000 5 5
1001~2000 10 10
Over 2000 15 15
△Ci common 10 15
Adjust the axle distance

installation tension and shaft load

Belt installation tension

Synchronous Belts are meshing transmissions, but proper installation tension is required to prevent tooth jumping and ensure smooth transmission. If installation tension is too weak, it may cause misalignment of the meshing, and if it is too strong, it may generate noise, both of which shorten the life of the belt. Please refer to the sonic belt tension meter available, which can accurately measure tension.

How to apply installation tension

  • 1. Accurately check the parallelism of all shafts, including the idler shaft, and the alignment of the pulleys.
  • 2. Apply a pressure force (F) to the center of the belt span.
  • 3. Apply tension so that the belt deflection (δ) is 1.6 mm per 100 mm of span.

How to calculate Pressing force (F)

How to calculate Pressing force (F)

F = Ti + t × Y L 16

  • F: Deflection (δ) at the center of span t
    Required Pressing force N{kgf}
  • Ti: installation tension N{kgf}
  • Y: Correction coefficient
  • δ: Deflection mm=0.016t
  • t: span length mm

t = C2 - (Dp - dp)2 4

  • C: Center distance mm
  • Dp: Pitch circle diameter of large pulley mm
  • dp: Small pulley pitch circle diameter mm
  • L: Belt length mm

Axial load

The axial load can be calculated using the following formula:

Axial load = 2 Ti × sin Φ 2

  • Ti: installation tension N{kgf}
  • Φ: Pulley winding angle (degrees)

installation tension list

Ultra PX Belt HC type

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
UP3M-HC 6 29 {3.0} 40 {4.1} 38.5 {3.9}
10 52 {5.3} 72 {7.3} 61.8 {6.3}
15 82 {8.4} 114 {11.6} 90 {9.2}
UP5M-HC 10 108 {11.0} 147 {15.0} 102.7 {10.5}
15 171 {17.4} 232 {23.7} 152 {15.5}
20 238 {24.3} 323 {32.9} 200.7 {20.5}
25 307 {31.3} 418 {42.6} 249.1 {25.4}
30 377 {38.4} 513 {52.3} 297.2 {30.3}
35 450 {45.9} 613 {62.5} 344.9 {35.2}
40 524 {53.4} 713 {72.7} 392.5 {40.0}
UP8M-HC 15 177 {18.0} 235 {24.0} 190.6 {19.4}
20 244 {24.9} 324 {33.0} 246 {25.1}
25 317 {32.3} 421 {42.9} 299.9 {30.6}
30 389 {39.7} 517 {52.7} 352.6 {36.0}
35 464 {47.3} 616 {62.8} 404.3 {41.2}
40 540 {55.1} 717 {73.1} 455.1 {46.4}
45 618 {63.0} 820 {83.6} 505.2 {51.5}
50 697 {71.1} 926 {94.4} 554.7 {56.6}
55 777 {79.2} 1032 {105.2} 603.7 {61.6}
60 859 {87.6} 1140 {116.2} 652.2 {66.5}
UP14M-HC 40 794 {81.0} 1050 {107.1} 834 {85.0}
60 1255 {128.0} 1659 {169.2} 1242.7 {126.7}
80 1747 {178.1} 2310 {235.6} 1649.0 {168.2}
100 2255 {229.9} 2982 {304.1} 2053.6 {209.4}
120 2771 {282.6} 3665 {373.7} 2456.9 {250.5}

Ultra PX Belt HA specification

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
UP5M-HA 10 108 {11.0} 147 {15.0} 102.7 {10.5}
15 171 {17.4} 232 {23.7} 152.0 {15.5}
20 238 {24.3} 323 {32.9} 200.7 {20.5}
25 307 {31.3} 418 {42.6} 249.1 {25.4}
30 377 {38.4} 513 {52.3} 297.2 {30.3}
35 450 {45.9} 613 {62.5} 344.9 {35.2}
40 524 {53.4} 713 {72.7} 392.5 {40.0}
UP8M-HA 15 177 {18.0} 235 {24.0} 190.6 {19.4}
20 244 {24.9} 324 {33.0} 246.0 {25.1}
25 317 {32.3} 421 {42.9} 299.9 {30.6}
30 389 {39.7} 517 {52.7} 352.6 {36.0}
35 464 {47.3} 616 {62.8} 404.3 {41.2}
40 540 {55.1} 717 {73.1} 455.1 {46.4}
45 618 {63.0} 820 {83.6} 505.2 {51.5}
50 697 {71.1} 926 {94.4} 554.7 {56.6}
55 777 {79.2} 1032 {105.2} 603.7 {61.6}
60 859 {87.6} 1140 {116.2} 652.2 {66.5}
UP14M-HA 40 794 {81.0} 1050 {107.1} 834.0 {85.0}
60 1255 {128.0} 1659 {169.2} 1242.7 {126.7}
80 1747 {178.1} 2310 {235.6} 1649.0 {168.2}
100 2255 {229.9} 2982 {304.1} 2053.6 {209.4}
120 2771 {282.6} 3665 {373.7} 2456.9 {250.5}

Ultra PX belt HY type

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
UP3M-HY 6 39 {4.0} 47 {4.8} 76.0 {7.7 }
10 68 {6.9} 82 {8.4} 118.2 {12.1}
15 105 {10.7} 127 {13.0} 167.7 {17.1}
UP5M-HY 10 125 {12.7} 165 {16.8} 152.5 {15.6}
15 194 {19.8} 256 {26.1} 223.7 {22.8 }
20 265 {27.0} 350 {35.7} 293.6 {29.9}
25 338 {34.5} 446 {45.5} 362.6 {37.0 }
30 413 {42.1} 545 {55.6} 430.8 {43.9 }
35 488 {49.8} 644 {65.7} 498.4 {50.8 }
40 564 {57.5} 744 {75.9} 565.4 {57.7 }
UP8M-HY 15 255 {26.0} 290 {29.6} 272.0 {27.7 }
20 347 {35.4} 394 {40.2} 341.3 {34.8 }
25 444 {45.3} 505 {51.5} 406.9 {41.5 }
30 541 {55.2} 615 {62.7} 469.9 {47.9}
35 640 {65.3} 728 {74.2} 530.6 {54.1 }
40 740 {75.5} 841 {85.8} 589.6 {60.1 }
45 842 {85.9} 957 {97.6} 647.0 {66.0 }
50 944 {96.3} 1073 {109.4} 703.0 {71.7}
55 1048 {106.9} 1192 {121.6} 757.9 {77.3}
60 1150 {117.3} 1308 {133.4} 811.8 {82.8}
UP14M-HY 40 1020 {104.0} 1225 {124.9} 1044.3 {106.5}
60 1581 {161.2} 1899 {193.6} 1537.5 {156.8}
80 2162 {220.5} 2597 {264.8} 2023.1 {206.3}
100 2754 {280.8} 3308 {337.3} 2053.1 {209.4}
120 3366 {343.2} 4043 {412.3} 2978.6 {303.7}

PX Belt SHINAYAKA 530 (for endless belts)

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
P2M-530 4 5.9 {0.6} 7.8 {0.8} 10.0 {1.0 }
6 9.4 {1.0} 12 {1.2} 16.1 {1.6}
10 17 {1.7} 22 {2.2} 28.2 {2.9}
P3M-530 6 20 {2.0} 26 {2.7} 17.6 {1.8}
10 36 {3.7} 47 {4.8} 29.0 {3.0 }
15 57 {5.8} 74 {7.5} 43.1 {4.4 }

PX Belt (for Open-ended belt)

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
P2M 4 5.9 {0.6} 7.8 {0.8} 10.0 {1.0 }
6 9.4 {1.0} 12 {1.2} 16.1 {1.6 }
10 17 {1.7} 22 {2.2} 28.2 {2.9}
P3M 6 20 {2.0} 26 {2.7} 17.6 {1.8 }
10 36 {3.7} 47 {4.8} 29.0 {3.0}
15 57 {5.8} 74 {7.5} 43.1 {4.4}

PX belt RC type

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
P2M-RC 4 5.9 {0.6} 7.8 {0.8} 10.0 {1.0}
6 9.4 {1.0} 12 {1.2} 16.1 {1.6}
10 17 {1.7} 22 {2.2} 28.2 {2.9}
P3M-RC 6 20 {2.0} 26 {2.7} 17.6 {1.8}
10 36 {3.7} 47 {4.8} 29.0 {3.0}
15 57 {5.8} 74 {7.5} 43.1 {4.4}
P5M-RC 10 97 {9.9} 132 {13.5} 56.9 {5.8}
15 154 {15.7} 209 {21.3} 82.4 {8.4}
20 214 {21.8} 291 {29.6} 139.0 {14.2}
25 276 {28.2} 376 {38.4} 201.0 {20.5}
P8M-RC 15 203 {20.6} 265 {27.0} 151.3 {15.4}
20 280 {28.5} 365 {37.3} 193.0 {19.7}
25 363 {37.0} 473 {48.3} 233.0 {23.8}
40 617 {63.0} 807 {82.3} 346.6 {35.3}
60 982 {100.1} 1283 {130.9} 488.3 {49.8}
P14M-RC 40 990 {101.0} 1310 {133.6} 635.5 {64.8}
60 1564 {159.5} 2070 {211.1} 973.2 {99.2}
80 2178 {222.1} 2882 {293.9} 1316.8 {134.3}
100 2812 {286.7} 3720 {379.3} 1664.9 {169.8}
120 3455 {352.3} 4572 {466.2} 2016.6 {205.6}

PX Belt

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
P5M 10 108 {11.0} 147 {15.0} 56.9 {5.8}
15 171 {17.4} 232 {23.7} 82.4 {8.4}
20 238 {24.3} 323 {32.9} 139.0 {14.2}
25 307 {31.3} 418 {42.6} 201.0 {20.5}
P8M 15 225 {22.9} 294 {30.0} 151.3 {15.4}
20 311 {31.7} 406 {41.4} 193.0 {19.7}
25 403 {41.1} 526 {53.6} 233.0 {23.8}
40 686 {70.0} 897 {91.5} 346.6 {35.3}
60 1091 {111.3} 1426 {145.4} 488.3 {49.8}
P14M 40 990 {101.0} 1310 {133.6} 635.5 {64.8}
60 1564 {159.5} 2070 {211.1} 973.2 {99.2}
80 2178 {222.1} 2882 {293.9} 1316.8 {134.3}
100 2812 {286.7} 3720 {379.3} 1664.9 {169.8}
120 3455 {352.3} 4572 {466.2} 2016.6 {205.6}

PX Belt (Water Resistant)

Types
(pitch)
Belt width
mm
installation tension Ti N {kgf} Correction coefficient YN {kgf}
Recommended value Maximum
P5M-W 10 108 {11.0} 147 {15.0} 50.1 {5.1}
15 171 {17.4} 232 {23.7} 74.2 {7.6}
25 307 {31.3} 418 {42.6} 184.9 {18.9}
P8M-W 15 225 {22.9} 294 {30.0} 147.2 {15.0}
25 403 {41.1} 526 {53.6} 226.7 {23.1}
40 686 {70.0} 897 {91.5} 337.3 {34.4}
60 1091 {111.3} 1426 {145.4} 475.2 {48.5}

Pulley alignment

Even if the pulley alignment is correct, Synchronous Belts will not rotate in the center of the pulley, but will tend to lean to one side. Although this force is very weak, if the pulley alignment is poor, the belt will be pressed hard against the pulley flange, causing it to break or snap. Therefore, adjust the pulley alignment within the tolerances in the table below.

Pulley alignment tolerance

Belt size All varieties
Belt width mm 30 or less 30~50 50~100 Over 100
Allowable parallelism Under 51000 Under 41000  Under31000 Under 21000
θ minutes 17 or less 13 or less 10 or less 6 or less
Pulley alignment tolerance

How to adjust the pulley

As shown in the figure, a straight edge is placed on the reference pulley, and the other pulleys are brought into contact with the straight edge on their entire surfaces (ε=0), allowing the pulleys to be lined up in the correct positions.

In addition, by keeping δ in the figure below the limit, it is possible to achieve parallelism of the axis at the same time.

How to adjust the pulley

Open-ended belt

Connection Method

Open-ended belt

Belt dimensional tolerance

Belt length tolerance

Unit: mm
PX Belt
Ultra PX Belt
Tolerance
256 or less ±0.41
Over 256 and under 3384 ±0.46
Over 384 and under 3512 ±0.51
Over 512 and under 3760 ±0.61
Over 760 and under 1016 ±0.66
Over 1016 and under 1272 ±0.76
Over 1272 and under 1528 ±0.81
Over 1528 and under 1776 ±0.86
Over 1776 and under 2032 ±0.91
Over 2032 and under 2288 ±0.97
Over 2288 and under 2544 ±1.02
Over 2544 and under 2792 ±1.07
Over 2792 and under 3048 ±1.12
Over 3048 and under 3304 ±1.17
Over 3304 and under 3560 ±1.22
Over 3560 and under 3808 ±1.26
Over 3808 and under 4064 ±1.32
Over 4064 and under 4320 ±1.37
Over 4320 and under 4576 ±1.42

Belt width tolerance

Unit: mm
Belt width Belt length
840 or less Over 840
1680 or less
1680
Something that exceeds
10 or less +0.3
-0.6
+0.6
-0.6
-
Over 10 and under 45 +0.8
-0.8
+0.8
-1.2
+0.8
-1.2
Over 45 and under 75 +1.2
-1.6
+1.6
-1.6
+1.6
-1.6
Over 75 and under 100 +1.6
-1.6
+1.6
-2.0
+2.0
-2.0
Over 100 +2.4
-2.4
+2.4
-2.8
+2.4
-3.2

Pulley material and unit mass

The following pulley materials are suitable:

Pulley material and unit mass

Unit: g/cm3
Material Material Symbol unit mass
Carbon steel for machine structures S45C 7.85
aluminum alloy A2017-T4 2.8
stainless steel SUS304 7.8

General formula for pulley design

・Pitch circle diameter Dp = N × p π

・Tooth tip diameter Do = Dp- 2 a = N × p π -2 a

  • p: Belt pitch mm
  • N: Number of pulley teeth
  • a: Pitch line depth (PLD) mm
Unit: mm
P3M P5M P8M P14M
p Pitch 3 5 8 14
a(PLD) 0.381 0.571 0.686 1.397

*The tip diameter of the P14M Standard Stock Belt Sprockets in the catalogue includes a correction value, so some pulleys may not follow this formula.

Pulley dimensional tolerances

Tooth lead direction error (relative to the center line of the finished shaft hole)

Parallelism of teeth and shaft hole centerline

Unit: mm
Belt width used Tooth trace direction error tolerance
Under 50 0.03
Over 50 and under 100 0.04
Over 100 0.05

Tooth tip circumference runout (relative to the center line of the finished shaft hole)

Unit: mm
Tip diameter Allowable runout
203.20 or less 0.13
203. Over 20 0.13 + [(tooth tip diameter - 203.20) x 0.0005]

Side runout (relative to the center line of the finished shaft hole)

Unit: mm
Tip diameter Allowable runout
101.60 or less 0.1
Above 101.60 and below 254.00 Tooth tip diameter x 0.001
Over 254.00 0.25 + [(tooth tip diameter - 254.00) x 0.0005]

Cylindricity of tooth tip cylinder (gradient = taper x 1/2)

Unit: mm
Pulley nominal width Cylindricity tolerance
20 or less 0.01
Over 20 and under 50 0.02
Over 50 and under 100 0.04
Over 100 0.06
  • ・The above tolerances are for cutting work.
  • - Molded pulleys vary depending on the conditions of use and layout, so please consult with us.