technical data Reducer DCBL Hypoid Motor Selection

If you would like to see the selection procedures and important points, please proceed below.

If you would like to narrow down or tentatively select a product series,
Please click here.

If your usage conditions have been decided and you would like a detailed selection,
Please click here.

Selection

We can select the motor capacity based on the operating cycle, load torque, etc.

When making an inquiry, please use the selection request sheet.

1. Conditions

(1) Driving cycle

Output shaft rotation speed
Output shaft rotation speed
  • n T: Maximum output shaft rotation speed (r/min)
  • t 1: Acceleration time (sec)
  • t2: Steady state time (sec)
  • t 3: Deceleration time (sec)
  • t 4: Stop time (sec)
  • t t:Time for one cycle (sec.)
Output Torque
Output Torque
  • T a: Acceleration torque (N・m)
  • Tc: Steady-state torque (N・m)
  • T b: Deceleration torque (N・m)

(2) Load moment of inertia Ir

Calculate the load moment of inertia Ir on the output shaft of the reducer from the table on how to calculate the moment of inertia

Ir: Load moment of inertia on the reducer output shaft (kg·m 2)

負荷慣性モーメント

(3) Acceleration/deceleration torque T a, T b

Acceleration torque T a = △T a + T c

Deceleration Torque

△Ta = 2πIr × △na 60 × t1

Tb = △Tb - Tc

△Tb = 2πIr × △nb 60 × t3

  • I r: Load moment of inertia on the reducer output shaft (kg·m 2)
    {I r + (I g + I m) × i 2}
    (Motor shaft converted reduction unit inertia + motor inertia) x speed ratio^2 (moment of inertia data)
  • △T a: Inertial acceleration torque (N・m)
  • △n a: Rotational speed difference (r/min) △n a = n T- n o
  • △T b: Inertial deceleration torque (N・m)
  • △n b: Rotational speed difference (r/min) △n b = n T-no

(4) Steady-state torque T c

定常トルク

Tc = G(M1 + 2.1 × M2 × L) × μ × r

G = gravitational acceleration: 9.80665m/s 2

定常トルク

Tc = G(M1 + M2) × μ × ℓ 2 × π × η

定常トルク

Tc = GM × r

2. Selection Procedure

(1) Calculate the reduction ratio i i Nm nT

Nm: Motor rotation speed

(2) Calculate the average output torque 平均出力トルクを算出
(3) Deciding on size

Average Torque
T ave. < Reducer output shaft rated torque

Maximum torque
T a < rated torque of reducer output shaft × series coefficient f s
T b < rated torque of reducer output shaft × series coefficient f s

f s: Series coefficient

Maximum torque < Maximum torque of reducer output shaft

(4) Calculate the average output shaft rotation speed n ave. 平均出力軸回転速度
(5) Check the rotation speed

n ave. × i < reducer rated input rotation speed

n T × i < Reducer maximum input rotation speed

series Input rotation speed (r/min)
Rating Maximum
DCHM 2500 3000
(6) Check the radial load on the output shaft OHL < N: Allowable radial load of reducer*

O.H.L = 2000 × Ta × f × Lf D

D: Pitch circle diameter of sprocket, etc. (mm)

*Please refer to the allowable radial load in kW ratings table.

f: OHL coefficient

Chain Geared belt V-belt
1.0 1.25 1.5

Lf: Position of action factor

ℓ/Q 0.25 0.38 0.5 0.75 1
Lf 0.8 0.9 1 1.5 2

Reference length: Q

Model number speed ratio Q
DCHM020 10 ~ 60 36
DCHM040 10 ~ 50 42
DCHM075 10 ~ 50 58

Series coefficient: fs

Model number Series Coefficients
DCHM 1.7

Hollow output shaft

Hollow output shaft

Q: Please refer to the table on the left for reference lengths.

Solid Output Shaft

Solid Output Shaft

Q: Please refer to the dimension table for each type for the reference length.

3. Check the output shaft overhang load

When attaching a sprocket, gear, belt, etc. to the central output shaft, or when attaching to a hollow shaft using case taps, make sure that the overhang load acting on the output shaft is below the allowable OHL of the small gear motor being used.

*When using a heavy-duty toothed belt, add installation tension to the calculation, regardless of the OHL coefficient (f) in Table 1.

[Overhang load calculation]

Allowable OHL ≧ 2000 × TF × f × Lf Dp

  • TF: Correction torque
  • f: OHL coefficient (Table 1)
  • Lf: Position of action coefficient (Equation 1)
  • Dp: Pitch diameter of sprocket etc. (mm)

Reference length: Q

Model number speed ratio Q
DCHM020 10 ~ 60 36
DCHM040 10 ~ 50 42
DCHM075 10 ~ 50 58

Table 1. OHL coefficient: f

Chain Geared belt V-belt
1.0 1.25 1.5

Equation 1. Position of action factor: Lf

ℓ/Q 0.25 0.38 0.5 0.75 1
Lf 0.8 0.9 1 1.5 2
Solid shaft Hollow shaft
Solid Output Shaft

Q: Please refer to the dimension table for each type for the reference length.

Hollow output shaft

Q: Please refer to the table on the left for reference lengths.

4. Moment of inertia converted into motor shaft

Model number Reduction ratio moment of inertia
x10-4 kg m 2
DCHM020-20H 10 0.065
15 0.050
20 0.045
25 0.041
30 0.040
40 0.039
50 0.038
60 0.037
DCHM040-30H 10 0.117
15 0.076
20 0.060
25 0.051
30 0.047
40 0.056
50 0.052
DCHM075-35H 10 0.306
15 0.209
20 0.170
25 0.146
30 0.140
40 0.158
50 0.145
Model number Reduction ratio moment of inertia
x10-4 kg m 2
DCHM020-22U 10 0.068
15 0.051
20 0.046
25 0.041
30 0.040
40 0.039
50 0.038
60 0.037
DCHM040-28U 10 0.133
15 0.083
20 0.065
25 0.054
30 0.049
40 0.059
50 0.054
DCHM075-38U 10 0.347
15 0.227
20 0.180
25 0.152
30 0.145
40 0.165
50 0.149

DCBL Hypoid Motor

Motor Capacity brake moment of inertia
x10-4 kg m 2
0.2kW No brakes 1.154
With brake 1.159
0.4kW No brakes 1.753
With brake 1.780
0.75kW No brakes 12.761
With brake 12.918